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PART II:  

 

THE GEOMETRIC DETERMINATION OF PRIME NUMBERS  

BY MEANS OF THEIR INTERVALS. 

 

        [First drafted on Wednesday, May 12, 2004] 

         

 The question of discovering the underlying geometry of prime 

numbers is as old as number theory itself, and one of the difficulties in 

discovering their generative principle is found in the epistemological flaw of 

treating numbers as things in and of themselves. As LaRouche often 

emphasized, music is between the notes. So, if we change the rules of the 

game and stop considering numbers pragmatically as if they represented 

loose change in our pockets, and begin to look at them as shadows of 

intervals of some form of productive physical action in the universe, we 

might be able to discover something fundamental about them. 

 

 Since there exists no possible geometry for things taken in 

themselves, as self-evident entities, the only way to solve that shortcoming is 

to eradicate the fallacy of considering numbers as things and start 

considering them as representing something else than what we have been 

brainwashed into thinking they are. A number is like money, it has no 

intrinsic value, and it is as stupid as money, in and of itself. Similarly, 

human beings are not a collection of stupid things that keep bumping into 

each other in the night or indulge in stupid competition with each other. 

Thus, from the vantage point of physical constructive geometry, the ordering 

principle of prime numbers should not be sought for in them, as such, but in 

the harmonic proportionality that lies between them. It is essentially the 

harmonic relationships between human beings that define economic science, 

just like it is the harmonic relationships of numbers that define the theory of 

numbers. It’s that simple. 

 

As LaRouche has taught us, economics is the rate of increase of the 

productive powers of labor, which leads individual human beings into 

creating scientific and cultural objects that are necessary to improve the 

relative population density of our planet. Even though the world economy is 

more complex than prime numbers, their generative principle of reason and 

power is the same. So, let us apply the same universal physical principle of 

proportionality to the growth of prime numbers. By doing this, you will 

discover that it is the rate of increase of intervals between prime numbers 
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that establishes their geometric ordering and the density of their distribution 

and growth, nothing else.  

 

The following will demonstrate that the underlying, or rather the 

interlaying geometry of position of the intervals between prime numbers, 

forms patterns of well-ordered multiply-connected circular action, in which 

all of the multiples of the primes overlap each other as if in some braided 

form. This means that the patterns formed by the multiples of primes are but 

shadows of a process of physical action, which produces those braided 

patterns and which determines the distribution of the primes. We shall 

demonstrate that the principle of that rate of increase pertains to C-256. 

 

 

  ORDERING PRIME INTERVALS, AS SUCH. 
 

 

First of all, order the prime numbers and their multiples according to a 

repeated simple series of intervals of 2 and 4. For instance, there is an 

interval of 2 between 5 and 7, and an interval of 4 between 7 and 11; then, 

again, there is an interval of 2 between 11 and 13, and an interval of 4 

between 13 and 17, etc. This way, the multiples of all of the prime numbers 

will form well-ordered patterns within the lattice. Such patterns could be 

mapped on a plane, on a cylinder, on a cone, on a torus, or on a sphere, as if 

they were projected as a reflexion of a higher domain that produces them. 

However, they don’t belong to the same domain that generates cubic roots, 

or higher roots. They appear to form circular patterns whose straight line 

shadows can be made visible on the plane of Figure 1, as if you were to 

“connect the dots” between all of them, and make them emerge from the 

dimly lit wall of Plato's cave.  

 

Each series of prime multiples, say, for example, the multiples of 5, 

like 85, 125, 205, 245, 325, 365, 445, 485, etc., forms a unique pattern. Each 

prime has a unique pattern of multiples, and there exist as many patterns as 

there are prime numbers. All of them overlap each other and are 

interconnected by each other's intervals to form a coherent latticework. I let 

the reader illustrate this, for himself, by experimenting with Figure 1. 
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Figure 1. TABLE OF PRIME NUMBERS AND THEIR MULTIPLES. 

 
5        7      11    13    17    19    23    25    29    31    35    37    41   

43      47    49    53    55    59    61    65    67    71    73    77   7 9   

83      85    89    91    95    97  101  103  107  109  113  115  119  

121  125  127  131  133  137  139  143  145  149  151  155  157  

161  163  167  169  173  175  179  181  185  187  191  193  197  

199  203  205  209  211  215  217  221  223  227  229  233  235  

239  241  245  247  251  253  257  259  263  265  269  271  275  

277  281  283  287  289  293  295  299  301  305  307  311  313  

317  319  323  325  329  331  335  337  341  343  347  349  353  

355  359  361  365  367  371  373  377  379  383  385  389  391  

395  397  401  403  407  409  413  415  419  421  425  427  431  

433  437  439  443  445  449  451  455  457  461  463  467  469   

473  475  479  481  485  487  491  493  497  499  503  505  509  

511  515  517  521  523  527  529  533  535  539  541  545  547  

551  553  557  559  563  565  569  571  575  577  581  583  587  

589  593  595  599  601  605  607  611  613  617  619  623  625  

629  631  635  637  641  643  647  649  653  655  659  661  665  

667  671  673  677  679  683  685  689  691  695  697  701  703  

707  709  713  715  719  721  725  727  731  733  737  739  743  

745  749  751  755  757  761  763  767  769  773  775  779  781  

785  787  791  793  797  799  803  805  809  811  815  817  821  

823  827  829  833  835  839  841  845  847  851  853  857  859  

863  865  869  871  875  877  881  883  887  889  893  895  899  

901  905  907  911  913  917  919  923  925  929  931  935  937  

941  943  947  949  953  955  959  961  965  967  971  973  977  

979 983  985  989  991  995  997  1001 

 

Find the multiples of any prime number and “connect the dots” of 

their latticework. All of the multiples of each prime number can be 

generated in a similar fashion. For example, the multiples of 7 form simple 

diagonals across the lattice as they alternate by intervals of 8 and 4, such that 

between 7 and 35, for instance, there are 8 intervals, which are 11, 13, 17, 

19, 23, 25, 29, 31, and between 35 and 49, there are 4 intervals, which are 

37, 41, 43, and 47, etc. Again, the point to retain, here, is that it is not the 

values of those numbers in themselves that count, but the geometry of 

position of their intervals. So, what is the principle behind the construction 

of those patterns on intervals within the lattice?   
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THE DENSITY OF SINGULARITIES BETWEEN PRIMES 
 

 

 The density of intervals between the multiples of primes increases, as 

the prime numbers get larger. Note that the intervals between the multiples 

of 5 are 2 and 6, the intervals between the multiples of 7 are 4 and 8, and the 

intervals between the multiples of 11 are 6 and 14, and so forth. The 

intervals of those intervals grow arithmetically by even numbers as all of 

them increase consistently by 4.  Thus, we can establish a table of the 

different intervals of the multiples of primes, including the quadratic 

intervals between those intervals.  [Figure. 2] 

 

Figure 2 

 

PRIMES &                         INTERVALS            INTERVALS OF 

MULTIPLES             INTERVALS 

 5                        [2 and 6  ]     4 

                  2    2                     2                                     

 7                        [4 and 8  ]   4 

                 4     2           6       4 

 11                  [6 and 14]   8              

                 2     2                       2        

 13                       [8 and 16]   8 

                 4            2                 6     

 17                       [10 and 22]   12 

                 2              2         2            

 19                     [12 and 24]   12     

        4            2         6      4  

 23                             [14 and 30]           16 

        2              2           2          

 25                             [16 and 32]   16    

        4              2           6 

 29                                 [18 and 38]   20 

        2              2                       2 

 31                                 [20 and 40]   20 

                4             2                 6             4  

 35                                 [22 and 46]   24 

       2             2                 2 

 37                             [24 and 48]   24     



 5

       4             2                 6      

 41                                 [26 and 54]   28 

      2               2              2                       

 43                                 [28 and 56]   28 

      4              2                6     4 

47 [30 and 62]      32    

                          2                2                 2                          

  49                             [32 and 64]  Etc.    

  

   

As the value of a prime number increases, so do, proportionately, the 

intervals of their multiples, up to a certain limit. The first series of intervals 

of multiples increases by alternating factors of 2 and 6, the second series of 

intervals of intervals grows by a constant factor of 4. This second growth 

rate, that is, the intervals of intervals, represents a second derivative form of 

action, following an underlying ordering of quadratics, that is, an ordering of 

the second degree, from within which the musical octaves, based on C-256, 

is derived. This second degree of intervals changes, because the ratio of 

intervals increases by a conical spiral function, which distributes the primes 

in accordance with the power of 2.  

 

This does not mean that things stop growing at that point, but that the 

system has reached a limit, a boundary condition dominated by second 

degree quadratics, whose heads pierce through the cracks of the universe to 

show that they belong to some infinite and universal object which eludes the 

grasp of our sense perception. It is this constant ratio of the power of 2 

within quadratics, this invariant interval of interval factor of doubling, which 

determines the density of distribution of prime numbers.  
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    PART III 

 

A REFLEXION ON THE APRIL 27, 2002 PEDAGOGICAL OF 

JONATHAN TENNENBAUM CONCERNING ARTICLES 107- 108 of 

{DISQUISITIONES ARITHMETICAE} BY CARL FRIEDRICH 

GAUSS.         

[First drafted in Leesburg, May 8, 2002.] 
  

 As Jonathan demonstrated in his pedagogical, Gauss had challenged 

the scientific community to solve an elementary, but difficult problem of 

discovering the ordering principle for the distribution of prime numbers, 

given only a single shadow projected on the dimly lit wall of Plato's cave. 

The discovery of this ordering principle had led Gauss to develop the 

fundamental theorem of Algebra, which gave a devastating refutation of 

D’Alembert, Leonard Euler and Jean-Louis Lagrange's method of algebraic 

empiricism. This is the way Gauss formulated his crucial concept, again, 

using the method of Diophante:  

 

>107. "It is very easy, given a modulus, to characterize all the numbers that 

are residues or nonresidues…But the inverse question, {given a number, to 

assign all numbers of which it is a residue or a nonresidue,} is much more 

difficult." To wit: 

 

>108. "-1 is a quadratic residue of all numbers of the form 4n+1 and a 

nonresidue of all the numbers of the form 4n+3."  (Carl Gauss, 

{Disquisitiones Arithmeticae}, p. 71-72) 

 

 Think of this question, as a sort of “boot-strap” principle of self-

generation, in which the process contains the paradox of Diophante; that is, 

if the effectiveness of this inversion were not true, there would be an 

absolute limit beyond which one could not go. However, one is able to go 

beyond and contradict the limit to show there exist higher-boundedness of 

action in the universe. So, in that unique way, the universe is “limited and 

yet increasingly self-bounded.” In other words, Gauss is showing how to 

solve the Leibniz anti-empiricist proposition: {given the property of a 

tangent, find the curve.} 

 

To discover this, Jonathan proposed to proceed in the following 

manner: Since subtracting -1 from a number has the same significance as 

adding 1 to it, take the series of squares: 4, 9, 16, 25, 36, 49, 64, 81, 100, 
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121, etc., which represents the entire series of rational whole numbers, and 

add 1 to each number such that they are now transformed as:  

 

5, 10, 17, 26, 37, 50, 65, 82, 101, 122, etc. 

 

When you look at this last series, you realize that all primes of the 

4n+1 species form half of that series of squares +1, that is, 5, 17, 37, 65, and 

101, but such is not the case for the other half of those numbers. My surprise 

was to find that those other numbers were not directly derivable by means of 

the form [4n+3] either.  I was perplexed, until I found that the other numbers 

of that series, 10, 26, 50, 82, and 122, were all of the form of a close relative 

of 4n+1, which is 2[4n+1], a biquadratic. Even though Gauss had pursued 

the matter by demonstrating that –1 was a residue to a prime modulus of the 

biquadratic form of 8N + 1, I did not see how helpful this would be until I 

found the ordering principle behind the numbers of the biquadratic form of 

the square root of 2[4n+1]-1. That looked to me as a very curious sort of 

complex number. 

 

As the history of science shows, a discovery of physical principle is, 

most of the time, caused by a nagging anomaly, a real ambiguity that keeps 

knocking in the back of your mind. My investigation into the series of 

numbers in the form of the square root of 2[4n+1]-1 led to the realization 

that these numbers could integrate the two species of primes, [4n+1] and 

[4n+3], that Gauss was talking about. So, I asked myself: What if the 

principle underlying this form of the square root of 2[4n+1]-1, alone, were to 

provide a least action pathway to integrate all of the primes dressed up in the 

form of squares, in accordance with Fermat, Diophante, and Pythagoras? I 

first lined up the series of numbers as follows to look at the ordering 

principle of the change between them, in my mind's eye: 

   

  5 =       [4x1+1]      

10 =   2 [4x1+1]    

 17 = [4x4+1]   

26 =   2 [4x3+1]   

 37 =       [4x9+1] 

50 =   2 [4x6+1]                                  

 65 = [4x16+1]     

82 =   2 [4x10+1]      

 101 =       [4x25+1]      

122 =   2 [4x15+1] etc. Figure 3.      
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 I noticed that all of the values of [4n+1] corresponded to squares +1, 

that is, [4x1+1], [4x4+1], [4x9+1], [4x16+1], [4x25+1], forming directly the 

series of numbers 5, 17, 37, 65, 101. However, if one pays attention to the 

other numbers of the form 2[4n+1], that is, a process of simple doubling of 

primes, as opposed to a squaring, a most fascinating series of intervals 

emerges, and a series of intervals of intervals takes hold of the whole 

process, whose harmonic ordering generates all of the primes!   

 

The intervals between each multiple within the 2[4n+1] brackets, that 

is, between 1, 3, 6, 10, 15, have intervals of 2, 3, 4, 5, an increase by 1, while 

the intervals of intervals between the corresponding numbers 10, 26, 50, 82, 

122, are 16, 24, 32, 40, thus expressing a constant increase by 8, a 

biquadratic interval. I will show that there exists, here, a {harmonic 

ordering principle of these complex biquadratic intervals} which generates 

all of the primes from any of the modules of the power of two, that is, the 

256 series.  

 

 

NUMBER THEORY AND TORUS GEOMETRY  
 

 

From this vantage point, it became clear to me that the {intention of 

numbers}, established by God himself, so to speak, had never been to 

empirically count things as self-evident things, as if you were counting your 

loose change, but to express a different kind of change, a change in 

direction, a change of orientation, even a change of axioms by means of 

intervals of physical action; that is, by means of adding a new 

dimensionality to the cycles of universal physical processes. In this case, the 

added dimensionality is that of the physical geometry of the torus. Thus, 

what was implied here, was a physical principle of action such as that of a 

least action form of  the catenoid curvature of a torus which functions in 

such a way that it is motionless, yet is, paradoxically, everywhere in motion. 

  

For example, take any module of the 256 series, say 16, and put it to 

work into a complex circular form of a torus. It doesn't move, but it changes 

all the time. 
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           1[3]     11[23]  

       *            *             *   

                             0                                      2[5]     

                          *               →                            * 

                   5[11]                                                 8[17] 

                      *              *  

                 12[25]                                                   6[13] 

           * ↑       16             ↓                 * 

                 9[19]                                                      3[7] 

                      *              * 

                    7[15]                                                10[21]   

                *        ←                       * 

                           13[27] *            *            * 15[31] 

                    4[9]       14[29]            

                    

                                         Figure 4     

  

First, mark the simple 16 intervals of action by whole numbers 0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, clockwise, count every unit of 

interval of action starting from 0 to 1, noting that you are increasing each 

interval of action by one, after each number, as you move forward, 

clockwise. Fill the entire module until all of the 16 intervals are covered. 

 

 Next, overlap this first series of simple intervals by a second series of 

the complex numbers of the form square roots of 2[4n+1]-1, which changes 

the direction, ever so slightly, by adding a new dimensionality. Go from the 

square root of 2[4x1+1]-1 up to the square root of 2[4x120+1]-1. This 

generates all of the primes from a second-degree derivative interval of 

intervals, which overlaps the intervals of the first degree, binds them 

together proportionately, and modifies their course by an infinitesimal 

degree of change in each interval of action. This should demonstrate the 

point made by Fermat, which is that, with this least action process of the 

torus, you have reached the boundary condition of all rational numbers with 

roots of the second degree.  Thus, as if in a fast spinning sun, the self-
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bounding physical geometry of the process of change is reflected in the 

characteristic of the torus. 

 

For example, the first prime in the series is the square root of 

2[4x1+1]-1, which is [3], because the square root of 10-1 is [3]. That is your 

first prime, whose value overlaps the first interval from 0 to 1 in the circle of 

Figure 5, thus, modifying its position course ever so slightly.  

 

The second prime in the series is the square root of 2[4x3+1]-1, which 

is [5], because the square root of 26 - 1 is [5]. That is your second prime, 

whose value overlaps the two intervals between 1 and 2 in the circular form, 

and maintains the same changed course.  

 

The third prime in the series is the square root of 2[4x6+1]-1, which is 

[7], because the square root of 50-1 is [7]. That is your third prime, whose 

value overlaps the three intervals between 2 and 3 in the circular form, and 

maintains the same changed course. 

 

The missing biquadratic square roots of 2[4x2+1]-1, of 2[4x4+1]-1, 

and of 2[4x5+1]-1, are not rational whole numbers, and therefore, have 

simply been overshadowed, leaving the necessary spaces open for 

subsequent primes to come later and fill their pre-established harmonic 

positions within the cycle of the modular function. 

 

The remaining primes (and multiples of primes) found in this manner 

shall be, [9], [11], [13], [15], [17], [19], [21], [23], [25], [27], [29], [31], all 

of which shall find their pre-assigned intervals in due course within this 

cycle. Although there exists a simple formula to achieve such results, it is 

better to construct these biquadratic second-degree {intervals of intervals} 

long hand, and enjoy the complex beauty of their relationships in the 

geometry of your mind. This way, you experience the amount of playful 

least action work that God has put into them.  

 

In a nutshell, this exercise intended to show how the “great theorem” 

of Fermat implicitly led us to generate and distribute all of the prime 

numbers in a Diophantine biquadratic form of the square root of 2[4n+1]-1, 

and thus, enabling us to develop all rational roots of the second degree as a 

{torus modular function}. As LaRouche indicated in {What Connects the 

Dots}, the “great theorem” of Fermat is not merely mathematical, as such, 

but “ontological” in character, that is, it pertains to the universal principle of 
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least action underlying all physical processes, including primarily economic 

processes. This is why Fermat was right in establishing a limitation whereby 

it is impossible to divide any power into two other powers of the same order 

beyond the second degree, because the universe is  “finite and yet not 

bounded.”  pierrebeaudry@larouchepub.com    

  

    FIN 

 
 


