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   XV 

 

SUPPLEMENTUM GEOMETRIAE DIMENSORIAE SEU GENERALISSIMA 

OMNIUM TETRAGONISMORUM EFFECTIO PER MOTUM: SIMILITERQUE 

MULTIPLEX CONSTRUCTIO LINEAE EX DATA TANGENTIUM 

CONDITIONE
1
 

 

 

 This treatise on the construction of a geometric machine cannot but provoke in 

the reader a profound state of perplexity. The errors of calculation, the mistakes of 

precipitation call for indulgence, but what are we to think of the treasures of the 

imagination deployed by Leibniz in order to set up a sophisticated mechanism for the 

purpose of calculating quadratures? Is there not in that an excess of naivety or even a 

flagrant use of contradictio adjecto? This challenge is throwing us off because we have 

reconnected with the Greek idea of a difference of nature, which was that of the Greek 

mathematicians, between theoretical geometry and practical geometry, a separation that 

the Leibnizian inventions are contradicting
2
: his taste for geometry had very early on 

turned toward Mixed Mathematics and even before he indulged in them he was already 

famous for his arithmetic machine including his machine for generating quadratures, the 

integraph, that he introduces as the fruit of a very old meditation, appears as the 

geometrical unresolved case
3
. First of all, in accordance with the spirit of his time, he 

                                                 
1
 Extension of geometric measurements using an absolutely universal method of realizing all quadratures 

by way of motion: accompanied by different procedures of construction of a curve from a given property of 

its tangents. (A. E. September 1693, M. S. V p. 294-301).   
2
  We have further investigated this separation with the discovery of non-Euclidean geometries.  

3
 This idea is defended by M.A.B. Chtykan, “Intergrirouiouchtchi mekhanizm Leibnitsa”, in Ousp. Matem. 

Naouk vii, 1/47, 1952. Cf. A. P Youschevitch, “Comparaisons des conceptions de Leibniz et de Newton”, 

S. L. Suppl. Xxvii, 1978; L. von Mackensen, “Leibniz als Ahnherr der Kybernetik”, S. L. Suppl xiii, 1974. 

We must also attribute this idea of the integraph to that of the algebraic machine invented in Paris in 1674, 

cf. Couturat, La Logique de Leibniz, p. 115, and the letters to Huygens (M.S. II, p. 15) to Oldenburg (M.S. 
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finds in the physical concretization of a curve the guarantee of its geometrical nature
4
. 

But the construction of an integraph goes beyond, it is no only aimed at the 

concretization of curves but also at generating geometrical operations. In that sense, it is 

directly connected to the other contemporary attempts of Huygens and Tschirnhaus.  

 

 In the second part of his Medicina mentis, published in Amsterdam in 1687
5
, 

Tschirnhaus had proposed a method for the construction of tangents to curves that is 

described by a stiletto attached to a thread fixed at two given points and constrained to 

pass around a certain number of other points called foci
6
. Tschirnhaus does not give any 

demonstration for the generalization of his method beyond three foci and he is mistaken. 

His mistake is immediately found and then corrected by Fatio Duillier, which is 

considered a proof of his mathematical talent, as noted by P. Costabel, and will give 

birth to a new method
7
, thanks to a collaboration with Huygens. On the contrary, Leibniz 

does not immediately notice the mistake of his friend Tschirnhaus and lets himself be 

seduced by the generalization which consists in conceiving “the foci as lines”. So, this 

generalization leads directly to the idea of the development and the generation of new 

curves by way of procedures that are both mechanical and abstract. Nevertheless, as he 

announces it in one of his first letters to l’Hospital
8
, he also comes up with a correction 

to the Tschirnhaus method, by using, as did Huygens before him, the mechanic-

geometrical properties of the center of gravity of a system of points
9
. Even if this result 

were to no longer be original, it had possibly contributed in giving Leibniz the idea of a 

possible solution for the problem of the inversion of tangents “independently of 

quadratures”
10

, in any case it directly inspired the elaboration of his general Rule for the 

composition of motions
11

. 

 

 As for Huygens, he published an article in l’Histoire des Ouvrages des Savants or 

Journal de Rotterdam where, after having given the rectification of the logarithmic curve 

proposed by Marquis de l’Hospital, he went on to construct a curve such that the portion 

of the tangent between a given point and the axis is a constant, a curve that he called 

                                                                                                                                                 
I, p. 73) and to Arnauld (P.S. I, p. 81). Finally, Couturat (Op. Cit.) reminds us that the logical process of 

Leibniz is constantly guided by the idea of a materialization of reasoning. 
4
 Cf. Supra De linea in quam flexile. 

5
 Medicina mentis , seu Tentamen Germinae logicae in qua disseritur de methodo detegendi incognitas 

veritates, Amsterdam, 1687. 
6
 The method is also shown in a letter of May 12, 1687, to Huygens (Oeuvres Completes, t. ix, p. 134-144). 

P. Costabel describes it completely in Leibniz et la dynamique, p. 60-62: “Tschirnhaus imagines a thread of 

constant length whose extremities are fixed at given points and whose tension is maintained by a stiletto. 

The idea is to study the tangent of the geometric curve that is described by the point of the stiletto…with 

two distinct and fixed points, one can complicate things by having the thread pass around a third fixed 

point…” In modern terminology, such curves are defined by a multipolar equation.  
7
 Cf. infra Responsio ad Dn. Nic. Fatii Duillerii imputations. 

8
 M.S. II p. 237. 

9
 Cf. infra De novo usu Centri gravitatis.  

10
 The paragraph of the letter to l’Hospital which mentions it follows immediately the one where Leibniz 

calls to mind the method of Tschirnhaus (M.S. II p. 238). 
11

 On which P. Costabel publishes a copy and a detailed commentary in Leibniz et la dynamique, p. 74-94. 

In reality, the call for dynamic considerations only confuses the resolution of this kinematical problem and 

makes its demonstration unsecured. 
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Tractrix (Tractoria)
12

. Huygens added: “ I am not submitting this curve just because of 

everything I have just said about it, but because there is another reason which is that it 

can also be described by quite a simple machine, and from there solve the problem of 

squaring the Hyperbola, which seems to be something worth considering on the part of 

geometers.”
13

  And then, he goes into the details of the traction mechanism that traces 

the curve. He said it is enough to pull, on a horizontal plane, “a point which by its 

weight, or otherwise, would cause some resistance at the end of a thread, or of an 

inflexible rod, and which would simply proceed from the other extremity” before 

concluding: “If that description were to be precise enough, in accordance with 

mechanical rules, and could be considered geometrical…we would have with that, along 

with the quadrature of the hyperbola, the perfect construction of problems that are 

reduced to this quadrature.” Even though Leibniz only got wind of this Huygens process 

indirectly, because of the negligence of his librarian, and he rather had to guess at it, 

right away, his imagination, which is inclined towards generalizations, got a hold of the 

idea that made him conceive of an even more universal machine, capable of realizing 

other types of quadratures.  

 

 We have to conceive of this machine like a new supplementum, to be ranked on 

the same level as the method of series of the Supplementum Geometricae praticae 

(Supplement of practical Geometry), that is to say, like an aside capable of realizing 

everything that is permitted to be realized for the completion of Geometry. In fact, 

Leibniz holds such a construction as perfect and complete for its type. The fact that he 

was hoping to realize real calculations with this method is not any more surprising than 

the logarithmic measures that he promised himself to generate on a suspended chain, but 

in what manner can such constructed quadratrices bring their share to the problem of 

quadratures? In fact, such a solution has curiously no practical value in his eyes except 

theoretically. To the perplexity of Huygens, Leibniz replies: “As for my general 

construction of quadratures by traction, it is sufficient for science that it be exact in 

theory, even if it were not to be properly executed in practice. When they are composed, 

the majority of the most geometrical constructions are of that nature.” 
14

 

 

 The geometric value of the integraph comes from the fact that it is the theoretical 

idea, in other words, in the new vocabulary, exact, of a practical construction that is only 

possible. It doesn’t matter that Leibniz might have believed or not in the concrete 

realization of his machine, it as for him sufficient that it were theoretically realizable, just 

                                                 
12

 That is precisely the curve that Leibniz declared having discovered in Paris at the instance of  doctor 

Perrault. The article is published in the Tome X of the Oeuvres Completes of Huygens, p. 407 in the form 

of a letter from “Christian Huygens to H. Basnage de Beauval”.    
13

 Loc. Cit., p. 409. Another note on the construction of his Tractrix also indicates to us the treasures of the 

technical imagination equally deployed by Huygens in his draft papers: “He imagines even a mechanism in 

which atmospheric pressure is involved. It is an upside down bottle, like the one he was using on the table 

of his pneumatic machine, and whose opening was covered with a round metal ring that was leaning 

against a round piece of leather or wet paper, allowing in the center the free passing of a tracing stiletto that 

was attached solidly to the metal ring in the middle of which it was placed. The rod that was to pull the 

apparatus was attached to that ring. A partial vacuum had been created inside of the bottle by heating the 

air inside of it, ahead of time, by means of a flame.”   
14

 M.S. II p.181. 
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like his hope for a closure of geometry is not the one of a real achievement but only of a 

possible one, confirmed by the possibility of filling in the gaps of present lacunas by 

means of supplements. Since the term geometric is being considered from now on as 

synonymous with exact, we are forced to count on the talents of Leibniz, the engineer, in 

order to accept the exactitude of his edification plans! 

 

 Nevertheless, the integraph has been hit with the two natural objections that it 

could not avoid but raise, the first being the geometricity of its constructions, the second 

being the difficulty of its practical realization.  The shrewdness of its inventor was to turn 

these two gross objections, one against the other, in order to show that they destroyed 

one another. The first was formulated by Jacques Bernoulli who had already addressed it 

against the machine that Huygens had imagined for the quadrature of the hyperbola
15

. 

More favorable, John Bernoulli later declared that he had convinced his brother
16

 (of its 

correctness). In reality, after reflection, there is not more reason to frown at the 

geometricity of such a construction any more than at evolutes, which are also results of 

an unrealizable theoretical mechanism, and even for the catenary chain, whose stunning 

properties have seduced geometric minds. On this point, Leibniz has made a decisive 

intervention by specifying to Huygens that it is the tracing and not the curve that must be 

called the tractrix
17

. So, did the catenary curve not reveal the unprecedented geometric 

and analytical properties of a curve generated by a physical process? Definitely, 

everything comes down to a question of definition. If, as Leibniz would say, geometrical 

means exact, then such curves reveal that clearly
18

, and by means of the mechanical 

imagination, geometry must move bravely ahead of the barely outlined analysis of 

transcendentals. However, in this case, any reproach to the difficulty, or even to the 

impossibility, of applying concretely such mechanisms is beside the point. In any event, it 

is quite improbable that Leibniz would have really attempted its realization.     

 

 But, why bother with these false trails and encumbering himself, as if he was 

really thinking of its practical modalities, and overwhelming himself with the luxury of 

details, forging ahead with such toilsome descriptions of weights and pulleys? Against all 

appearances, the subtle arrangement of threads, weights, and pulleys of different forms, 

tables and rulers, was not aimed at avoiding the predictable failure of a material 

realization, but only for the purpose of safeguarding the possible exactness of the tracing. 

It is precisely by attempting to construct it that one would replace the terrain of exactness 

by the one of approximation, as it is done when one calculates the partial sum of an 

infinite series. Devoid of all effective utilization, the mechanism keeps its value 

                                                 
15

 “I see that professor Bernoulli already has doubts about the geometricity of this generating process.” 

(M.S. II p. 161)  
16

 “ I am happy that you acknowledge the scrupulous examination that I have applied to your general 

quadrature by motion. I have explained it to my brother, who might not have given it sufficient attention, 

was complaining of its obscurity. He now agrees with me and he warmly approved of your method.” (M.S. 

III p. 138)  
17

 M.S. II p. 164. 
18

 “Also, I do believe that the description of the cycloid or of the lines generated by evolution is 

geometrical.  And I do not see why one would restrict geometric lines to those whose equation is 

algebraic.” (M.S. II p. 165) 
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completely theoretical and temporary
19

, with respect to the stammering of geometry on 

the chapter of transcendentals. One more time, it is the grafting of the theoretical upon 

the mechanical which governs the Leibnizian postulation of a possible geometrical 

achievement, by means of several supplements and which conciliates the two antinomistic 

hopes of optimism.    

 

 Such an argument for resituating the mechanism of traction within the family of 

the developments and rotations that had brought to geometry such precious gifts as the 

cycloid, is valid for the construction of curves, but is it valid for the problem of 

quadratures? If the complex equipment described in the article has the status of a 

calculus and must accomplish its functions, what would be the usefulness of an 

unrealizable calculus? By leaving aside the possibility that Leibniz might have thought of 

a similar type of machine as his arithmetic machine, whose difficulties of realization were 

no less dissuasive, we must note, on the one hand, that the uncertainty between theory 

and application characterizing the notion of construction is equally enveloping that of 

quadrature, as in the case of an actual tracing by compass and straight edge, that of a 

calculus, or that of a simple operational skeleton of a calculus that one considers merely 

possible
20

. However, especially under the detailed technicality of the integraph, there lies 

an outline of a theoretical teaching of first importance: the rough sketch of a 

classification of the still ill explored problem of the inversion of tangents. In fact, let us 

observe that his first idea stems from the understanding of the relationship of reciprocity 

between derivation and integration, formalized by the differential calculus, but of which 

Leibniz here considers the geometrical translation. Within this perspective, no matter 

how detailed the equipment may be, it takes second rank behind the theoretical 

reformulation of the problem of quadratures that underlies it. The integraph 

demonstrates that making a quadrature comes down to tracing a curve whose tangents 

are already given. Its pedagogical interest is no less important. It has the advantage of 

making visible the tangents but also the infinitangular polygon. Moreover, the process of 

construction by traction that inspired him and that Claude Perrault’s watch had given 

him the first utilization, puts into sight the envelop of a mobile line. Though he does not 

refer to his De linea ex lineis, it is quite probable that Leibniz had conceived the 

generality of this new mode of construction through the great kinship he saw between the 

different generations of envelopes, such as the caustics and evolutes. Therefore, as a 

pedagogical as much as a geometrical machine, the integraph acquires the pertinence of 

a materialized demonstration, at the moment when physics discovers the fertility of 

imaginary experiments.  

   

          *     *  

    * 

 

                                                 
19

 It is mostly this association, difficult to accept for us, which makes of the integraph a paradoxical 

machine. 
20

 For example, the use of quadrature of the hyperbola as the set syntagma to designate logarithms.   
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The measurement of curves, surfaces, and most volumes, just like the 

determination of the centers of gravity, all comes down to quadratures of plane figures
21

; 

such is the starting point of {geometry of measurements}, which is by nature different 

from {geometry of determination}, which involves only lengths of straight lines and by 

their means determines unknown points from others that are given. As a rule, we may 

naturally reduce this geometry of determination to algebraic equations, whose unknown 

has a determined degree
22

. However, geometry of measurements is not, by nature, 

reducible to algebra, even if it happens, sometimes, that it is reduced to algebraic 

magnitudes (when we have to deal with ordinary quadratures); similarly, the geometry of 

determination is not of the domain of arithmetic, even when it happens (in the case where 

quantities are commensurable) that it is reduced to numbers, that is rational quantities. 

We can derive from this {three types of magnitudes, rational, algebraic, and 

transcendental}. The {origin} of algebraic {irrationals} resides in the {ambiguity}
23

 of 

the problem, that is to say, its {multiplicity}; in fact, it would be impossible to regroup 

under one single calculus the different values or solutions of a problem, unless it is done 

by means of roots, but then, at the exception of certain particular cases, they cannot be 

reduced to rational magnitudes. On the other hand, the {origin of transcendental 

magnitudes is infinity}, so much so that the {analysis} which corresponds to the 

{geometry of transcendentals} (to which belongs measurements) is very precisely the 

{science of the infinite}
24

. 

 

 Furthermore, when algebraic magnitudes are constructed, what is required are 

determined motions which do not need material curves but only straight edges, or, when 

material curves are considered, only their intersection
25

 points are taken into 

consideration; on the other hand, in order to construct transcendental magnitudes, we 

have used, so far, the application
26

 of curves with respect to straight lines, that is we have 

adjusted one to the other, as in the case of the construction of the cycloid, or with the 

unraveling of a thread, or a leaf, when they are wrapped around a curve or a surface. If 

                                                 
21

 Leibniz considered wrongly that a measure is that much simpler as the measured object is of a lesser 

dimension. He wrote to the marquis de l’Hospital: “I wish… I were able to reduce quadratures to the 

rectifications of curves. Because the dimension of the line is simpler than that of a space.” (M.S. II p. 237) 
22

 The confusion between these two radically different geometries and the two different types of analysis 

that it summons may be for Leibniz the reason for their illegitimate exclusions pronounced by Descartes. 
23

 Which, just like that of ambiguous signs, it is not an indetermination but a proof of the fecundity of the 

characteristic.  
24

 Leibniz defines here the program of his unfinished work De Scientia Infiniti (cf. P. Costabel, “De 

Scientia infiniti” in Leibniz, aspects de l’homme et de l’oeuvre, p. 105) and reveals why the urgent task of  

geometry concerns transcendentals : firstly the problems of integration, as a general rule, makes them arise, 

secondly, only the transcendental values truly manifest infinity: therefore, for example, as it was shown by 

the demonstration of the impossibility of an indefinite quadrature of  a circular sector, the degree of the 

equation expressing this quadrature would exceed every finite degree. This character will be made explicit 

by the distinction between transcendental magnitudes and interscendental magnitudes (solutions of an 

equation of indeterminate degree but finite). To the extent that a transcendental equation were to be of an 

infinite degree, it would admit to an infinite number of solutions. 
25

 For example, when one traces a circle in order to measure equal distances on a straight line. 
26

 The term applicatio can be understood in two ways, on which Leibniz takes good care of maintaining the 

ambiguity: it could mean a material application by means of a thread (but, who has never used a thread in 

order to trace an evolute?) or it could mean a theoretical application, being reduced to a measure in the 

current sense of a rectification. 
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you wished to trace geometrically (that is by a constant and regulated motion) the 

Archimedean spiral, or the Quadratrix of the Ancients
27

, you could do it without any 

difficulty by adjusting a straight line to a curve, in such a way that the rectilinear motion 

would be regulated from the circular motion. And that is why, contrary to what 

{Descartes} has done, I will not exclude such curves from geometry, because the lines 

which are so described are exact, and they involve properties which are very useful, and 

are adapted to transcendental magnitudes. 

 

 There exist, however, other means of constructing curves, which involve the 

addition of a physical component. Such would be the case when the solution of a problem 

of geometry of determination were to be found by means of light rays (which could be 

often done with great profit)
28

, or if one were to proceed, as I have done with the 

quadrature of the Hyperbola, or for the construction of logarithms by making a uniform 

motion, and a retarded motion by a constant
29

 rubbing motion, or else, by means of a 

                                                 
27

 Also called the Quadratrix of Dinostrate or of Hippias. It is an auxiliary curve arising when the ancient 

geometers were looking for the quadrature of the circle. It is gotten by descending in a uniform speed BC 

while the radius AE rotates uniformly around A. Point F, the intersection of the Radius AE and line BC, 

trace the Quadratrix, which arrives at point G such that arcBED/AB + AB/AG. 

 

 
 

Figure 28. 

 

 Aside from the difficulty of adjusting these two motions, this construction runs mainly into the 

following objection: given that in the neighborhood of G, AE and line BC  come to merge together, point G 

cannot be determined exactly. But, here, Leibniz only retains the possibility of describing a geometric 

curve by a mechanism which is theoretically exact, independently of its unrealizable character. Cf. G.J. 

Allman, Greek Geometry from Thales to Euclid, Dublin, 1889, p. 180-193; T. L. Heath, A History of Greek 

Mathematics, Oxford, 1921, t. I p. 225-230. As for the spiral of Archimedes, it can be gotten by the 

uniform motion of a point on a radius turning in a constant angular speed. 
28

 Such an opening, no doubt inspired by the example of caustics, plunges the reader into a depth of 

perplexity. On can without a doubt think of a optical device that would suggest to the imagination the 

intuitive tracing of  a curve, but how do you assign points or take measurements on a ray of light? 

Nevertheless, his remark tells us that in the mind of Leibniz, Mixed Mathematics are not reducible to the 

problems of kinematics and that the physical means of producing curves cannot be reduced to composition 

of motions as they have been known for a long time. One can think that the new curves constructed  by 

means of optical devices are in particular the envelopes of families of curves, used in his construction of 

optical lines and of which he had initiated the theory in his De linea ex lineis. 
29

 This construction is the subject of article I of De resistentia Medii: “if a mobile is animated by a motion 

that is composed of a uniform motion and of a retarded motion proportionately with (different) spaces, that 

is to say, if the mobile (M) is displaced on a rigid ruler (AB) in conformity with the present hypothesis 
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string, or a heavy chain which produce the Catenary, or the funicular curve (la chaînette). 

As long as the mode of its construction is exact, it will belong to theoretical geometry: as 

long as it is practical and useful, it has a right of application in practice
30

. Indeed, any 

motion executed according to determined hypothesis is as much of the domain of 

geometry as is a center of gravity.  

 

But, there exist a new type of motion, which, I think, I have been the first to make 

use of in the constructions of geometric curves, and I will say in what circumstance; 

because it seems to me, better than any other type, to belong to pure geometry, and 

resembles the tracing of curves by means of threads originating from umbilical points or 

from focus curves
31

. In fact, the only condition that is required for the point to trace the 

curve in the plane is that it needs to be attached to the extremity of a thread located in the 

same plane (or in an equivalent plane), and that it must be in motion at the same time as 

the motion of the other extremity, but by a motion which is a simple traction, without any 

lateral impulse
32

, which would not really work with a thread because of its flexibility; 

because the point has to be pulled in the direction of the tension of the thread which drags 

it along, that is in the direction of the thread to the extent that there exist no obstacle 

along the pathway.  

 

However, since a material thread never has the absolute flexibility that geometry 

requires, it could easily drag an engraver’s point, in other words, the point producing the 

trace (which is free in the plane), in such a way that the motion of the engraver’s point 

would represent nothing else but a simple traction; but to this material obstacle we could 

easily oppose a material expedient
33

 such that, when the tracing point is pressing down 

                                                                                                                                                 
(which is being produced in a satisfactory manner by the rubbing of a ball moving horizontally along the 

ruler), while the extremity (B) of the ruler (AB), which is always parallel and has a uniform motion, is 

moving along the straight line (BT), this mobile will describe the logarithmic line (AL). Indeed, in general, 

if a mobile is moved by a motion which is composed of a uniform motion and a motion regulated by 

another law, it will describe a line whose ordinates and abscises express a relationship between the time 

and the spaces in that second law, which is a considerable theorem; we deduce from it a physical means of 

constructing logarithms, that ordinary geometry is incapable of constructing precisely.” (M.S. VI p. 137) 

Here, what also makes the value of the process is not the precision that is to be expected of such a tracing, 

but the exactness of the idea of its generation.  
30

 Here, Leibniz remodels the definitions of De vera proportione Circuli; he formerly called mechanism an 

approximate construction. His position has evolved on that point. A mechanism does not by itself pertain to 

practice. It can therefore be exact, in other words geometrical, as long as his description is. It becomes an 

approximation only when one tries to realize it in practice.  
31

 This is an allusion to the tracing of tangents by the method of nets proposed by Tschirnhaus in his 

Medicina Mentis. The correction that Leibniz brings and which is published in the Journal des Savants of 

September 14, 1693, is inspired directly from the Rule of composition of motions published in the previous 

number: “We have to consider that the stiletto which extends the nets could be conceived as having as 

many directions with equal speeds between them, that there are nets: because he pulls them equally, and 

since he pulls them it is also pulled. Thus, its composed direction (which must be perpendicular to the 

curve) passes through the center of gravity in as many points as there are nets…And these points, because 

of the equality of the tendency in our case, are equally distant from the stiletto, and thus fall in the 

intersections of the circle and the nets.” (M.S. VI p. 233 and P. Costabel, Leibniz et la dynamique, p. 108). 
32

 This condition means that at any point, the thread is tangent to the curve and that consequently this curve 

will be considered as the envelope of the family of tangents.  
33

 Cf. supra note 13. This phrase captures the whole ambiguity of the integraph.: does this mean that a 

material expedient would be able to reestablish the absolute exactitude of geometry?  
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slightly against the plane to which it belongs, it is bound to it; and, such an expedient can 

be represented by a weight added to the point, or tied to it, in such a way that, by this 

added heaviness, the point weighs on the horizontal plane where it is suppose to define 

the pathway which traces the curve.  

 

In this way, if the resistance of the weight, which impedes the motion of the point, 

is always stronger than the small residue of stiffness which is subsisting in the thread, the 

thread would be that much more tense, and its motion that much more regular; thus, the 

added weight would help the point trace properly the curve by traction only, and with no 

lateral impulse, which is the only condition that had to be imposed for the required 

motion. Furthermore, it follows that such a motion is remarkably suited for 

transcendental geometry, because it directly involves tangents that indicate directions for 

the curves, in other words elementary magnitudes that are infinite in number, but with 

unassignable lengths, in other words infinitesimals.  

 

It was a long time ago, in Paris, that I first imagined such a construction. The 

notorious Parisian Doctor, {Claude Perrault}, remarkable for his knowledge of 

Mechanics and Architecture, at the same time well known for his edition of Vitruvius, 

and who became one of the eminent life time members of the Royal Academy of 

Sciences
34

, submitted to me, as well as to a lot of other people, the following problem, 

which he was not able to solve, as he honestly admitted: that is, find the curve BB which 

a heavy point traces in the horizontal plane, at point B, or some equivalent point, and 

which is attached at the extremity B of a thread, or of a small chain AB; and when, by 

guiding the other extremity A of the thread AB along a fixed straight line AA, the weight 

of B is being pulled in the horizontal plane
35

, (or in another equivalent plane) where the 

straight line AA is already located along with the motion of the thread AB.  

 

In order to make the causality of this process more intelligible, he was using a 

watch B in a silver jewel-case that he had attached to a small chain whose other extremity 

he would pull along a straight edge AA that was fixed on a table. In this manner, the 

lowest part of the jewel-case (located in the middle of the bottom part) was describing on 

the table the curve BB. When I closely examined that curve, (It was in the period when I 

was studying tangents), I immediately realized that the key to solving the problem resided 

in the fact that the thread was constantly tangent to the curve
36

, that is to say that any 

straight line 3A3B is tangent to curve BB at Point 3B.  

                                                 
34

 This doctor, Claude Perrault, is the brother of the famous writer. His father intended him to be in the 

medical profession, a carrier from which he rapidly turned away in order to study architecture. In 1666, he 

became one of the founding members of the Academy of Sciences. Colbert put him in charge of translating 

Vitruve of whom we only had incomplete commentaries. This was a delicate work that he accomplished 

with a lot of talent, and for which he became famous. His main works in architecture ( the Louvre 

colonnade and the observatory of Paris) are no less remarkable.   
35

 The Gerhardt edition has here directum instead of dictum.  
36

 The tone of the confidence makes us think that the watch of Perrault could have played a significant role 

in the generation of these most profound intuitions of the Leibnizian differential calculus. On the one hand, 

it leaves on the table the trace of an envelope of a mobile line; on the other hand, it visualizes the inversion 

of the problem of the tangents. Ordinarily, it is the curve which is visible and the tangents that are to be 

sought. Here, it is the successive positions of the chain that show the tangents, and it is the curve that must 

be sought for.  
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Figure 29.  

 

 

Here is a demonstration of this: draw an arbitrarily small circular arc 3AF, whose 

center is 3B, and whose radius is the thread 3A3B. Pull the thread 3BF from F, directly, 

that is to say, according to its own direction up to 4A, in such a way that from 3BF the 

thread goes to 4B4A; assuming that we proceeded for points 1B and 2B as we did for 3B, 

any point B would describe a polygon 1B2B3B etc., whose sides always fall on the thread; 

thus, by indefinitely diminishing arc A3F, and by finally making it vanish, we describe 

our tracing by the motion of continuous traction, where the lateral displacement of the 

thread is continuous but always {unassignable}, it is clear that the polygon is changed 

into a curve, which has this thread as its tangent
37

. So, I realized by this, that the question 

could be reduced to a problem of conversion of tangents: find a curve BB such that the 

portion of its tangent between the axis AA and the curve BB is equal to a given 

constant
38

. It was not difficult either to understand that the tracing of this curve could also 

be reduced to the quadrature of the hyperbola.  

 

 Let us draw, in fact, the circle 1BFG whose center is C, or A (where the thread 

A1B is at the same time the ordinate of the curve and its tangent), and whose radius is 

                                                 
37

 One can understand the attraction for Leibniz of this apparatus which visualizes his great principle of the 

geometry of measurement, the equivalence between a curve and an infinitangular polygon (cf. De 

dimensionibus figurarum inveniendis) So, to the extent that H.J.M. Bos emphasizes its connection with the 

characteristic property of the Leibnizian differentials, that is to say, their indetermination (which is 

translated here by the possibility of taking the curvilinear elements of abscises for the variable of 

reference),  the Leibnizian construction suggests a link between this indetermination and the idea of an 

envelope of a family of curve. 
38

 Such is the formulation of the problem as treated by Huygens in the Journal de Rotterdam.  
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AB. This circle cuts the axis AE; given that 1BK is parallel to this axis, which the straight 

line CF cuts at K, 1BK will be tangent to the circular arc 1BF. Then, trace the straight line 

FLB going through F, and parallel to the axis AE, that line cuts 1A1B at L, and curve BB 

in B, from this straight line, trace LH equal to 1BK; by proceeding everywhere in the 

same manner, we get the curve of the tangent 1BHH, and we realize that rectangle 1B1AE 

is equal to the figure of the tangents, that is to the trilateral area 1BLH1B
39

; for example 

the product of 1B1A and 1A3E will be equal to the triline 1B3L3H1B. Therefore, since we 

can find the area for the figure of the tangents by the quadrature of the hyperbola, that is 

to say, by logarithms, as everybody knows, it is also clear that we can equally get 1A3E 

and 3L3b, and consequently, any point 3B on the curve. Conversely, if we are given the 

curve BB, we will be able to construct the quadrature of the hyperbola, that is, the 

logarithms.   

 

 I don’t want to explain all of this more extensively than what is necessary 

primarily because, in my opinion, the well known {Christian Huygens} has perfectly 

covered the subject; he told me, in a recent letter, that he just got an original idea for the 

quadrature of the hyperbola
40

, which has been recently published in the History of the 

                                                 
39

 According to the characteristic property of the curve, 3A3B =1A1B, then 1A3F =1A1B therefore 1A3F = 

3A3B, the straight lines 1A1F and 3A3B are parallels. Given 1BL the abscissa x of curve BB, and L3B its 

ordinate y. Given δ the angle of the tangent with the axis of the abscissas: tg δ = dx/dy; therefore here tgδ= 

1BK/1A1B. Therefore the curve HH represents for each x the value of dx/dy (in modern language, by 

posing that y = f(x) , HH is the curve of the derivative f(x) ) On this figure of tangents , that Leibniz also 

calls figure of canonical tangents of the circle,  (M.S. II p. 164) , the area 1BLH1B is measured by a 

primitive of  f(x), or either by f(x). The product of AB by 1AE (=LB) is therefore equal to the area 

1BLH1B. On the other hand, one can also note that this area is calculable by logarithms, even though the 

results are less immediate than Leibniz suggests. In fact, by calculating the coordinates of curve HH, thsnks 

to angle δ, one obtains : x = AB(1-cosδ), and y = Abtgδ. The area 1BLH1B would then be calculated by the 

primitive. :  

  ∫ydx = AB²ftg(δ).sin(δ).dδ = AB² [ ∫dδ/cosδ - ∫ cosδ.dδ  ] 

 

 The second term fcosδ.dδ is simply expressed as sinδ; as for the first term, let us note that it 

corresponds to the sum of the secants, that in the loxodormic curve, Leibniz has calculated in function of 

logarithms. It is therefore possible that Leibniz is making reference to that result. In modern terms, 

∫dδ/cosδ =  log 1tg(δ/2 + x/4) 1. The parametric equation of the curve is therefore x = k(1-cosδ);y = 

k[log[tg(δ/2 + x/4)] –sinδ] for δ varying from 0 to x/2.  
40

 “I will tell you some other time about the physico-mathematical quadrature of the hyperbola that I have 

found not long ago, the speculation on which has something pleasant.” (M.S. II p.153) The following letter 

testifies to the importance that Huygens attached to it: “I would like to have your appreciation of my 

Tractoria for the quadrature of the hyperbola…about which there is this remarkable thing that following the 

rules of mechanics, assuming that the plane is horizontal, the description must be perfect and consequently 

the same with the quadrature and its mean (of generation).” (M.S. II p. 161) That construction is published 

in the Journal de Rotterdam that Leibniz was not able to get. His answer contains precious indications 

about his conception of geometricity: “The construction of lines that you call Tractoria is of importance. I 

would rather use that term for the construction rather than for the line, because all lines can be constructed 

in that manner, always taking in the tangent a point whose distance from the point of the curve may be 

given, which will produce a new line, along which a piece of thread being attached, the other (point) will 

describe the given curve…And since you have meditated on the means of making (that motion) exact and 

practical, you will find that there might not be a better (name) in geometry which is better suited…When 

someone asks if that construction is geometrical, , it is necessary to agree on its definition. According to my 

language, I would say that it is. Thus, I believe that the description of the cycloid or of your lines 
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Works of Scientists. I can get a good idea of it thanks to the articles that the {Bernoulli} 

brothers have just published in the {Acta Eruditorum}, because, starting from the 

discoveries of Huygens, they have very judiciously applied a similar motion to describe 

the curve for which the portion of the tangent between the curve and the axis, that is BD, 

is in constant relationship with a portion of the axis between a fixed point and the point of 

intersection of the tangent, that is AD
41

, as is the constant proportion between two 

straight lines, N and M. This is what convinced me to finally publish my old reflections 

on this subject.  

 

 

                                                                                                                                                 
constructed by evolution is geometrical. And I don’t see why one would restrict geometric lines to those 

who equation is algebraic.” (M.S. II p. 164)  
41

 This problem has been proposed by Jean Bernoulli in an article of May 1693 entitled Solutio problematis 

Cartesio quondam propositi a DN. De Beaune: “Find curve ABC which has the following property: once a 

tangent is traced from a given point to the axis AE, let the abscissa AD be with tangent BD in a constant 

proportion with M and N.” (figure 30) with the following commentary: “Whatever the ratio between M and 

N, one can always describe a curve ABC by a continuous motion with the same easiness, independent of 

the fact that, according to the ratio of M and N, the curve might become more and more complex; indeed, 

in the case of equality, one can readily see that the curve ABC would be a circle.” (Opera Johannis 

Bernoulli, t. I p. 65) The formulation retained by Leibniz is more general, because the fixed point is no 

longer necessarily identified with the origins of abscissas. Jacques Bernoulli immediately published the 

solution and proposes a practical construction by means of “the constant motion of a thread GCB including 

the point at extremity C…” Huygens had begun to steer away from the problem but, as he admitted to 

Leibniz, he was unable to avoid the fact that “it kept rolling in his head.”, and in October 1693, he gave a 

ciphered solution in the Acta: “As far as the tracing of the curves in question onto a plane are concerned, I 

could, if it were necessary, indicate tracings that are different from the one proposed by the illustrious 

Bernoulli, and maybe more practical, and equally show how my tracing of the quadrature of the hyperbola 

has been perfectly realized,  which should be considered as the simplest of all Tractorias (this the name that 

can be given to them) , to the extent that its generation does not require the use of threads, but of only a rod 

equipped with a point fixed on each side, in a manner such that we can proceed in reverse by checking to 

see if the tracing has been done correctly. But I think that we have to wait for the elucidation of a 

remarkable application of those lines.” (M.S. V p. 290) 

 Leibniz had himself published the following commentary: “I have very much appreciated the 

problem posed by Bernoulli last May…especially because those very people who have not mastered the 

rudiments of my differential method will not succeed right away. Not only can on succeed bu a motion but 

also by an analytical calculus, if the ratio between the product of two straight lines (the tangent t and the 

portion of the axis r), or of their powers and of a power of the chord AB which underlies them, 

homogeneous to this product, , for example, the report between tr and c², or between trr and c³, or some 

other. The same problem applies to a lot of other relations, for example, if we knew the ratio between the 

portion AD and the ordinate BE.” (Ad problema in Actis Eruditorum an. 1693 mense majo propositum, 

M.S. V p.288)  
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     figure 30.  

 

 

 Right away, it was easy for me to understand that, once you grasped the 

relationship between the motion and the tangents, then you could use the same process to 

construct many other curves which would otherwise be more difficult to square. Because, 

even if you were to suppose that AA is not a straight line but a curve, the thread would 

nonetheless be tangent to BB. Furthermore, even if the length of the thread AB were to 

increase or diminish while you are pulling on it, it would nonetheless remain tangent to it. 

That is why, whatever the relationship between CA and AB (for example if the AB’s 

were the sinuses and the CA’s were the corresponding tangents), several expedients could 

be used to regulate the motion of the thread so that it could move, while itself 

diminishing, according to a given law. 

 

 This procedure gives us the ability to trace an infinite number of solution curves 

representing a similar problem, for example, the curve that goes through a given point. If 

the point producing the tracing is being pulled simultaneously by several threads, you 

will generate several composite directions
42

. But, even if we were dealing with only one 

thread, we could vary its length by attaching to weight B, a wheel, or a rotating 

mechanism, such that it could describe a cycloid in the plane. We could also join to B a 

rigid straight edge which would be always perpendicular to the thread, or which would 

make a constant angle with it, or an angle which would vary according to some 

determined law, and consider finally the tracing produced by another mobile point on that 

straight edge.   

 

 We can also pull two weights simultaneously from the same plane, whether their 

distances are fixed, or variable, during the motion in the plane. We can also imagine two 

                                                 
42

 In September 1693, Leibniz published in Acta Eruditorum his General Rule for the Composition of 

Motions (M.S. VI p. 231) One of the problems consists in finding the tangent to a curve described by 

several extended nets: “This tangent corresponds to the composed direction of the stiletto.” In order to 

discover it, Leibniz proposed the description of a circle around  the point of the curve, cutting the nets at 

points B, C, D…” If you find the center of gravity of these points, that is G, a straight line drawn from A, 

the normal AG will be the sought for tangent.” Even though it remains very obscure, Leibniz proposes to 

extend this method to ordinary conics, to the ovals of Descartes, to the co-evolutions of Tschirnhaus, and to 

an infinite number of other lines. Cf. P. Costabel, Leibniz et la dynamique, 1692, p. 56-95.  
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planes, one in which point C
43

 is invariably linked to one plane, and the other where the 

engraver’s point B is tracing with a very light contact (which does not interfere with the 

motion of B) and describes a new curve, and then suppose that this second plane has its 

own motion; the tangents to this new curve would be nothing else but the straight line 

which gives direction to the composite motion of the engraver’s point in the fixed plane, 

and the motion of the other plane. We shall determine the properties of the tangents from 

this new curve so described.  

 

By meditating on the extreme generality of this type of motion and on the 

incalculable applications that it can offer, I have darkened many a paper, years ago, while 

meditating on their practical applications, with respect to the wonderful resources that I 

was noticing with the conversion of tangents, and even more within the quadratures. 

Having discovered a {construction}, which spontaneously extends, in a totally universal 

manner, to all of the quadratures, I don’t even know if, on this question, the latest 

developments in Geometry have established a more general one. I have resolved myself 

to publish it. Since up until now I had reserved it, as raw material, for a future work, and 

with the idea of developing an integral theory
44

, my other tasks of totally different 

interests have taken me so much that I must, at the first opportunity, discharge myself of 

these old ideas for fear of loosing them; these current results, which I have waited twice 

as long as the time recommended by Horace, I have waited for {Lucine} long enough
45

.  

 

I would now like to show that {the general problem of quadratures is determined 

by constructing a curve whose inclination obeys a given law
46

}, that is to say, against 

which the assignable sides of the characteristic triangle have between them a given 

relationship; after which I will show that {we can construct this curve by the motion that 

I have imagined}. In fact, for any curve C(C), I imagine {two self-similar characteristic 

triangles}, one assignable TBC, the other, unassignable GLC.  

 

 

                                                 
43

 The Acta reported CB instead of C, an error corrected by Gerhardt.  
44

 Cf. P. Costabel, “De scientia infiniti”, in Leibniz, aspects de l’homme et de l’œuvre, p. 105. 
45

 Lucine, the goddess presiding over childbirth, is sometimes identified with Juno sometimes to Diana. In 

his Poetical Art, Horace recommends that poets should wait a period of nine years before publishing their  

works, which bring the discovery of Leibniz back to 1674-75.    
46

 Here, Leibniz established explicitly the relation of reciprocity between the calculus of quadratures and 

that of the tangents (in modern terms, between integration and derivation) What follows shows that he is 

mostly thinking of the relation between the problem of inversion of tangents and the calculus of 

quadratures, but a letter to l’Hospital shows us that he was thinking of constructing the inverse of tangents  

“independently of quadratures” by a method pertaining to envelopes, since Leibniz proposes to reduce the 

inversion of tangents to the tracing of a curve which is perpendicular to a series of given lines (M.S. II p. 

238). The merit of this intuition is attested by the fact that, in a modern analysis, an envelope of integral 

curves of a differential equation of the first degree is equally an integral curve of that equation and can 

therefore provide it with a singular solution.  
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figure 31 

 

 The {unassignable} triangle is delimited by the elements GL and LC of the 

coordinates
47

 CF and CB which form its sides, and by the elementary arc GC, which 

constitutes its base or its hypotenuse. But the assignable triangle TBC is delimited by the 

axis, the ordinate and the tangent, and expresses consequently the angle that the direction 

of the curve makes (that is also the direction of its tangent) with the axis or its basis, in 

other words, the inclination of the curve at the given point C.  

 

 The task, here, is to square the surface F(H) located between the curve H(H), the 

two parallel straight lines FH and (F)(H), and the axis F(F); take on this axis a fixed point 

A, and take an a conjugated axis the straight line AB perpendicular to AF, and going 

through A, then take on each straight line HF (which can be extended at will) a point C, 

that is let’s construct the curve C(C) in such a way that, once you have drawn between C 

and the conjugated axis AB (extended if need be), the conjugated ordinate CB (equal to 

AF), but also the tangent CT, the portion of the axis TB, that they delimit should be with 

BC in the proportion of HF with the constant a, that is to say, such that the product of a 

by BT is equal to the rectangle AFH (which circumscribes the triline AFHA).  

 

Under such conditions, I say that the product of a by E(C) (the difference between 

the ordinates FC and (F)(C) of the curve) is equal to the surface F(H); from this fact, if 

we extend the curve H(H) all the way to A, the triline AFHA of the figure to be squared 

is equal to the product of the constant a by the ordinate FC of the squaring figure. My 

calculus shows this immediately. Suppose in fact that AF = y, FH = z, BT = t, FC = x, 

then you get by hypothesis t = zy/a, but also t = ydx/dy, the expression of the tangents 

according to the formulas of my calculus, so: adx = zdy and consequently ax = Function 

of zdy = AFHA. The curve C(C) is therefore a quadratrix with respect to the curve H(H), 

because the product of its ordinate FC by the constant a is equal to the area under the 

curve, that is to the summation of the ordinates H(H) applied to their respective abscissa 

AF
48

.   

 

 Furthermore, since BT is to AF in the same proportion as FH is to a 

(hypothetically), and since the relationship of FH to AF (relationship which requires the 

                                                 
47

 The term has been introduced in De linea ex lineis. 
48

 Here, Leibniz resuscitated the ancient general rule of the geometry of indivisibles (cf. supra De 

geometria recondita, note 40).  
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figure to be squared) is given, we shall also know the relationship of BT to FH, that is to 

say, the relationship of BT to BC, and therefore, the one of BT to TC, in other words, the 

relationship between the sides of triangle TBC. That is why, the task of determining all of 

the quadratures and all of the measurements are realized, once you are able to establish 

the relationship of the sides of the assignable characteristic triangle TBC, in other words, 

from the law of the inclines, when you trace curve C(C), since we have shown that it is a 

quadratrix.  

 

 

 
 

figure 32.  

 

 

 The tracing can be generated in the following manner: construct figure 32, by 

establishing TAH as a fixed right angle located in the horizontal plane; have an empty 

cylinder TG move along the side AT vertically under the stated horizontal plane. Inside 

of this empty cylinder, place a second filled cylinder FE, mobile from top to bottom, and 

which is connected at the top of F to a string FTC in such a manner that the part FT is 

located inside of the empty cylinder while the part TC is located in our horizontal plane. 

Furthermore, point C which describes the curve C(C), at the end of the string TC, must be 

bound to the plane by means of a weight which will rest on it; but the beginning of the 

movement will be located in the empty cylinder TG which, while coming away from A 

along AT will attract C. And while the point traces the curve, that is to say the engraver’s 

point C will move ahead toward A, a ruler HR located in the horizontal plane which is 

perpendicular to AH (the other side of the fixed right angle TAH), this impulsion would 

not impair the motion of point C, which is moving solely by the traction of the string, and 

would therefore allow it to maintain the direction of its motion. Let us suppose, as well, 

the existence of a shelf RLM which is moving downward at right angle with respect to 

the ruler HR, at the common point R, and which is otherwise constantly pushed by the 

empty cylinder, in such a way that ATHR forms a rectangle. Let us suppose finally that 

on this shelf is traced (on a thin relief sheet) a rigid line E(E) on which the filled cylinder 

bites continuously through a notch which you can imagine is being engraved in the 

extremity E, such that as R approaches T, the cylinder FE descends. Since the length ET 

+ TC is given (It includes the filled cylinder EF and the totality of the thread TC), and 

also the relationship between TC and TR or BC (because the law of the inclines is given), 
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we will also know the relationship between ET and TR, the ordinate and the abscissas of 

line E(E), then we can determine, by means of ordinary geometry alone, and trace it on 

the shelf LRM.   

 

Thus, this device gives us the tracing of the curve C(C). So, by the very definition 

of our motion, TC is everywhere tangent to curve C(C). Here, then, is the construction of 

a curve C(C) whose inclinations obey a given law, that is to say where is given the 

relationship between the sides of the assignable characteristic triangle TRC or TBC.  This 

curve being a quadratrix of the figure that was to be squared, as I have just shown it, we 

will also obtain the quadrature by the same required measure.  

 

 We can apply similar procedures in varied ways to different problems posed by 

the method of inversion of tangents: for example, if point T were to be displaced on a 

curve T(T) (as opposed to straight line AT), the coordinate HC would have intervened in 

the calculation as well (that is to say the abscissas AB). In point of fact, the whole 

problem of inversion of tangents can be reduced to a relationship between three lengths, 

that is, the two coordinates CB and CH and the tangent CT, or other functions
49

 instead.  

 

 However, we can often end the discussion by a motion which is much more 

simple. For example, if the relationship between AT and TC had been known, (that is to 

say, given a family of circles, given in ordered position, and cutting a curve at right angle, 

find that curve), a much simplified apparatus would have sufficed. Since nothing 

concerning H and R are to be considered, all you need to do is to trace a rigid directrix 

line E(E) in a fixed vertical plane passing through AT. Thus a point T
50

 being chosen on 

the fixed straight line AT, that is to say, once the empty cylinder TG is determined, when 

the filled cylinder TE comes down as required by the directrix line E(E) on which it is 

biting, because the summation of ET + TC is constant 
51

(as before) and that the 

relationship between AT and TC is given, we will easily discover the adequate 

relationship between AT and TE, that is to say, the nature of line E(E) that permits you to 

find the curve C(C) which we were looking for.   

 

 

                                                 
49

 Cf. infra Nova calculi differentialis applicatio. Leibniz identifies as a function any straight line segment 

that can be determined from a curve. 
50

 The text of the Acta has TC instead of T.  
51

 The text of Gerhardt has ET + TF instead of ET + TC, also further on, AT and TC instead of AT and TE. 


